# Determinants of Renal Cell Carcinoma Invasion and Metastatic Competence

Kangsan Kim<sup>1,2</sup>, Qinbo Zhou<sup>3</sup>, Alana Christie<sup>4,5</sup>, Christina Stevens<sup>4,5</sup>, Yuanqing Ma<sup>4,5</sup>, Oreoluwa Onabolu<sup>4,5</sup>, Suneetha Chintalapati<sup>1</sup>, Tiffani Mckenzie<sup>4,5</sup>, Vanina Toffessi Tcheuyap<sup>4,5</sup>, Layton Woolford<sup>4,5</sup>, He Zhang<sup>6</sup>, Nirmish Singla<sup>4,7</sup>, Pravat Kumar Parida<sup>1,2</sup>, Mauricio Marquez-Palencia<sup>1,2</sup>, Ivan Pedrosa<sup>4,7,8</sup>, Vitaly Margulis<sup>4,7</sup>, Arthur Sagalowsky<sup>7</sup>, Zhiqun Xie<sup>3,4,9</sup>, Tao Wang<sup>3,4,9</sup>, Steffen Durinck<sup>10</sup>, Zora Modrusan<sup>10</sup>, Somasekar Seshagiri<sup>10,11</sup>, Payal Kapur<sup>1,4,\*</sup>, James Brugarolas<sup>4,5,\*</sup> and Srinivas Malladi<sup>1,2,12,\*</sup>

<sup>1</sup>Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA <sup>2</sup>Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA

<sup>3</sup>Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA

<sup>4</sup>Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA

<sup>5</sup>Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA

<sup>6</sup>Bioinformatics Core Facility, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA

<sup>7</sup>Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA

<sup>8</sup>Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA

<sup>9</sup>Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA

<sup>10</sup>Molecular Biology Department, Genentech, Inc., South San Francisco, CA, 94080, USA

<sup>&</sup>lt;sup>11</sup>SciGenom Research Foundation, Bangalore, 560099, India.

<sup>&</sup>lt;sup>12</sup>Lead Contact

<sup>\*</sup>Correspondence: <a href="mailto:payal.kapur@utsouthwestern.edu">payal.kapur@utsouthwestern.edu</a> (P.K), james.brugarolas@utsouthwestern.edu (J.B), and srinivas.malladi@utsouthwestern.edu (S.M)

#### **Table of Contents**

- Supplementary Figures 1-9
   Supplementary Tables 1-6



**Supplementary Fig. 1:** Architectural patterns and tumor grade in RCC patients with invasive intravascular tumor thrombus. **a,b,** Representative images of aggressive (**a**) and indolent (**b**) patterns in PT and TT from 71 ccRCC patients. **c,** Distribution of architectural patterns in PT and TT from 71 ccRCC patients (2 patients were excluded due to limited TT sample). **d,** Nuclear grade of PT and TT in 71 ccRCC patients. **e,** Overview of mutations, CNVs and clinical parameters from non-ccRCC patients.



**Supplementary Fig. 2:** Oncogenomic profiles of tumor thrombus ccRCC and nccRCC cohorts. **a**, Total number and driver number of mutations of PT (n=91) and TT (n=135) in ccRCC samples. Data are presented as scatter dot plots and lines are at mean. **b**, Somatic mutational frequency in this cohort and other published ccRCC datasets. **c**, Somatic mutations according to commonality between PT and TT (common), private to PT (PT specific) or TT (TT specific) in ccRCC patients. **d**, Number of mutations and driver mutations of PT (n=14) and TT (n=20) in non-ccRCC patients. Data are presented as scatter dot plots and lines are at mean. **e**, Composition of defined driver mutations in intravascular non-ccRCC TT samples. **f**, Somatic mutations common in PT and TT (common), private to PT (PT specific) or TT (TT Specific) in non-ccRCC patients.



Supplementary Fig. 3: Genes differentially expressed in TT. a, Pearson correlation of differentially expressed genes in TT across various tumor types. b-d, Prognostic power of PRRX1 (c), FOSB (d), and EGR1 (e) expression in ccRCC. Images are available from Human Protein Atlas. [https://www.proteinatlas.org/ENSG00000116132-PRRX1/pathology/renal+cancer/KIRC], [https://www.proteinatlas.org/ENSG00000125740-FOSB/pathology/renal+cancer/KIRC], and [https://www.proteinatlas.org/ENSG00000120738-EGR1/pathology/renal+cancer/KIRC]. Kaplan-Meier (log rank) test. e, Gene set enrichment analysis showing enrichment for TGF $\beta$  related gene sets in TT compared to PT.



**Supplementary Fig. 4:** AP1 role in ccRCC migration. **a**, mRNA expression of IEGs in biologically independent PT-graft (n=8) and TT-graft (n=9) in mice. Data are presented as scatter dot plots and lines are at mean. **b**, Scratch wound healing assay results of c-Fos/AP-1 inhibitor T-5224 in 769-P cells. **c-d**, Proliferation assay results of c-Fos/AP-1 inhibitor T-5224 in 769-P (**c**) and 786-O (**d**) cell lines. **e**. Knockdown validation of *JUNB* siRNA. **f-i**. Scratch wound healing assay (**f,g**) and proliferation assay (**h,i**) under siRNA treatment. n=4 biologically independent samples. Data are presented as mean +/- SEM. Two-tailed Mann-Whitney *U*-test (**b-i**). **j**, Other differentially expressed genes from biologically independent PT (n=114) and TT (n=161). Data are presented as scatter dot plots and lines are at mean. Two-sided unpaired student t-test.



**Supplementary Fig. 5:** Enriched signatures in metastatic clones. **a,b**, Differentially expressed genes (**a**) and enriched gene signatures between TT and M (**b**). Two-sided unpaired student t-test (**a**). Nominal p-value from GSEA analysis (**b**).



**Supplementary Fig. 6:** Traits associated with metastatic TT. **a**, Observed metastatic-free survival in RCC patients with invasive TT in this cohort. **b**, Overall survival of RCC patients with intravascular TT based on metastatic incidence. Kaplan-Meier (log rank) test. **c**, Somatic mutational frequency observed in non-metastatic tumor thrombus (TT<sup>M</sup>) and metastatic tumor thrombus (TT<sup>M</sup>) in ccRCC (left) and non-ccRCC patients (right). **d**, Histologic architectural patterns of matched PT (inner most circle), TT (middle), and metastasis (outer circle) of 3 ccRCC patients.



**Supplementary Fig. 7:** Altered stromal composition dictates metastatic incidence. **a-b,** Prognostic power of differentially expressed genes in metastatic TT (p-value - Kaplan-Meier (log rank) test from cBioportal). **c,** Enriched Gene Ontology (GO) gene sets in metastatic tumor thrombus compared to non-metastatic tumor thrombus. **d,** List of significantly altered hallmark gene sets (Nominal p-value < 0.01 from GSEA analysis) between TT<sup>NM</sup> and TT<sup>M</sup>. **e,** Gene expression of T-regulatory cell marker *CTLA4* and endothelial cell markers from biologically

independent  $TT^{NM}$  (n=78) and  $TT^{M}$  (n=82) patient tumor samples. Data are presented as scatter dot plots and lines are at mean. Two-sided unpaired student t-test. **f**, Quantification of immunohistochemistry images of PD-L1 using  $TT^{NM}$  (n=16, 10patients) and  $TT^{M}$  (n=17, 10 patients) slides. Data are presented as mean +/- SEM. **g-j**, Database deconvolution-based approach eTME analysis (**g**), TIMER (**h**), EPIC (**i**), and MCPCOUNTER (**j**) to identify stromal components in  $TT^{NM}$  and  $TT^{M}$  from biologically independent  $TT^{NM}$  (n=78) and  $TT^{M}$  (n=82). Two-sided unpaired student t-test. **k-m**, TPM gene expression values used for QUANTISEQ database analysis of M1 macrophages (**k**), M2 macrophages (**I**), and dendritic cells (**m**) from biologically independent  $TT^{NM}$  (n=78) and  $TT^{M}$  (n=82). Data are presented as scatter dot plots and lines are at mean. Two-sided unpaired student t-test.



**Supplementary Fig. 8: a,** Differential gene expression in high/low grade tumor thrombus. Two-sided unpaired student t-test. **b**, enriched gene sets in high grade (grade 3/4) and low grade (grade 2) TT. Nominal p-value from GSEA analysis.



**Supplementary Fig. 9:** mTOR inhibition attenuates tumor growth and metastasis. **a,** Immunohistochemical quantification of phospho-S6 in low-grade and high-grade TT (n=65 patients, 81 samples). Data are presented as scatter dot plots and lines are at mean +/- SEM. Two-tailed Mann-Whitney *U*-test. **b-c**, Gene set enrichment analysis of mTOR signaling between PT and TT (**b**) and TT and M (**c**). **d,** Gross images of PDXs from TT (XP373 and XP453) and metastasis (XP434) treated with vehicle or mTOR inhibitor. **e,** Tumor growth curve of metastatic PDX line XP434 with vehicle or mTOR inhibitor (vehicle (n=5) and mTOR inhibitor (n=3) mice). Data are presented as mean +/- SEM. One-tailed Mann-Whitney *U*-test. **f,g,** Representative images highlighting reduced metastasis in liver (**f**), lung and bone (**g**) from mice treated with everolimus compared to vehicle. **h,i**, Representative luciferase immunofluorescence images and quantification of liver (**h**) and lung (**i**) sections (n=5 for each group). Data are presented as mean +/- SD. Two-tailed Mann-Whitney *U*-test.

## **Supplementary Table 1** Patient and pathological characteristics.

|                                       | N (%)            |
|---------------------------------------|------------------|
| Median age at diagnosis (IQR)         | 62 (52-69)       |
| Sex                                   | ,                |
| Female                                | 30 (36.1%)       |
| Male                                  | 53 (63.9%)       |
| Ethnicity                             |                  |
| Hispanic                              | 27 (32.9%)       |
| Non-Hispanic                          | 55 (67.1%)       |
| Race                                  |                  |
| Asian                                 | 1 (1.2%)         |
| Black                                 | 7 (8.5%)         |
| Native Hawaiian/Pacific Islander      | 1 (1.2%)         |
| White                                 | 73 (89.0%)       |
| Median BMI (IQR)                      | 29.0 (25.0-33.1) |
| Median tumor size, cm (IQR)           | 8.9 (7.0-11.5)   |
| Focality                              |                  |
| Multifocal                            | 8 (9.9%)         |
| Unifocal                              | 73 (90.1%)       |
| Histology                             |                  |
| RCC                                   | 4 (4 20()        |
| Chromophobe RCC                       | 1 (1.2%)         |
| Papillary RCC                         | 1 (1.2%)         |
| Unclassified RCC                      | 7 (8.4%)         |
| Clear cell RCC                        | 73 (88.0%)       |
| Non-RCC                               | 4 (4 00/)        |
| Leiomyosarcoma                        | 1 (1.2%)         |
| Sarcomatoid dedifferentiation         |                  |
| Present                               | 13 (15.9%)       |
| Not identified                        | 69 (84.1%)       |
| Necrosis                              |                  |
| Present                               | 58 (70.7%)       |
| Not identified                        | 24 (29.3%)       |
| Tumor grade                           | 0 (0 00/)        |
| 1                                     | 0 (0.0%)         |
| 2                                     | 4 (4.9%)         |
| 3                                     | 42 (51.9%)       |
| 4 Margin involvement*                 | 35 (43.2%)       |
| Margin involvement*  Margins involved | 25 (30.5%)       |
| Margins uninvolved                    | ` ,              |
| •                                     | 57 (69.5%)       |
| pT<br>3a                              | 37 (45.1%)       |
| 3b                                    | 28 (34.1%)       |
| 3c                                    | 9 (11.0%)        |
| 00                                    | J (11.070)       |

| 4                      | 8 (9.8%)   |
|------------------------|------------|
| pN                     | , , ,      |
| pN1                    | 15 (18.3%) |
| pN0 (or pNx)           | 67 (81.7%) |
| Metastases development | · · ·      |
| At diagnosis           | 23 (27.7%) |
| After diagnosis        | 18 (21.7%) |
| Not observed           | 42 (51.6%) |

<sup>\*</sup>Malignant cells microscopically observed at distant surgical vein margin.

**Supplementary Table 2** Architectural features in ccRCC, and their frequencies in primary tumor and in thrombus.

|                               | Frequency (%)     |                          |  |
|-------------------------------|-------------------|--------------------------|--|
|                               | Tumor<br>(n = 73) | Thrombus (n= 71)         |  |
| Architectural Features        | , , ,             | , ,                      |  |
| Microcystic                   | 8 (11.0%)         | 0 (0%)                   |  |
| Tubular/Acinar                | 13 (17.8%)        | 4 (Š.6%)                 |  |
| Compact small nests           | 36 (49.3%)        | 13 (18.3%)               |  |
| Bleeding follicles            | 4 (5.5%)          | 0 (0%)                   |  |
| Large nests                   | 37 (50.7%)        | 17 (23.9 <sup>°</sup> %) |  |
| Alveolar                      | 38 (52.1%)        | 21 (29.6%)               |  |
| Papillary/Pseudopapillary     | 14 (19.2%)        | 6 (8.5%)                 |  |
| Thick trabecular/Insular      | 44 (60.3%)        | 11 (15.5%)               |  |
| Solid sheet                   | 58 (79.5%)        | 33 (46.5%)               |  |
| Median patterns present (IQR) | 3 (2-5)           | 1 (1-2)                  |  |

**Supplementary Table 3** Clinicopathological characteristics of ccRCC cohort. Association between features and metastasis evaluated with a Fisher's exact test (categorical features) and Student's t-test (continuous measures).

|                                  | TT <sup>NM</sup> (n = 38) | TT <sup>M</sup> (n = 35) | р       |
|----------------------------------|---------------------------|--------------------------|---------|
| Median age at diagnosis, years   | 64.5 (55-69)              | 59 (52-66)               | 0.096   |
| (IQR)                            | ,                         | ,                        |         |
| Sex                              |                           |                          |         |
| Female                           | 13 (34.2%)                | 11 (31.4%)               | 0.80    |
| Male                             | 25 (65.8%)                | 24 (68.6%)               |         |
| Ethnicity                        | ,                         | ,                        |         |
| Hispanic                         | 11 (29.7%)                | 15 (42.9%)               | 0.25    |
| Non-Hispanic                     | 26 (70.3%)                | 20 (57.1%)               |         |
| Race                             | ,                         | ,                        |         |
| Asian                            | 1 (2.7%)                  | 0 (0.0%)                 | 0.62    |
| Black                            | 2 (5.4%)                  | 2 (5.7%)                 |         |
| White                            | 34 (91.9%)                | 33 (94.3%)               |         |
| Median tumor size, cm (IQR)      | 7.9 (6.7-10.2)            | 9.5 (7.5-13.0)           | 0.086   |
| Focality                         | ,                         | ,                        |         |
| Unifocal                         | 34 (91.9%)                | 31 (88.6%)               | 0.63    |
| Multifocal                       | 3 (8.1%)                  | 4 (11.4%)                |         |
| Margin involvement               | 11 (28.9%)                | 11 (31.4%)               | 0.82    |
| рТ                               | ,                         | ,                        |         |
| 3a                               | 25 (65.8%)                | 8 (22.9%)                | 0.0016  |
| 3b                               | 10 (26.3%)                | 15 (42.9%)               |         |
| 3c                               | 2 (5.3%)                  | 6 (17.1%)                |         |
| 4                                | 1 (2.6%)                  | 6 (17.1%)                |         |
| pN                               | , ,                       | , ,                      |         |
| pN0/pNx                          | 37 (97.4%)                | 25 (71.4%)               | 0.0020  |
| pN1                              | 1 (2.6%)                  | 10 (28.6%)               |         |
| Sarcomatoid dedifferentiation    | 1 (2.6%)                  | 9 (25.7%)                | 0.0042  |
| Tumor necrosis present           | 20 (52.6%)                | 31 (88.6%)               | 0.0008  |
| Tumor grade                      |                           |                          |         |
| 2                                | 4 (10.5%)                 | 0 (0%)                   | <0.0001 |
| 3                                | 27 (71.1%)                | 11 (31.4%)               |         |
| 4                                | 7 (18.4%)                 | 24 (68.6%)               |         |
| Thrombus grade                   |                           |                          |         |
| 2                                | 21 (55.3%)                | 4 (12.1%)                | 0.0007  |
| 3                                | 13 (34.2%)                | 23 (69.7%)               |         |
| 4                                | 4 (10.5%)                 | 6 (18.2%)                |         |
| Indolent pattern present in PT   | 29 (76.3%)                | 21 (60.0%)               | 0.13    |
| Indolent pattern present in TT   | 13 (34.2%)                | 3 (9.1%)                 | 0.012   |
| Aggressive pattern present in PT | 33 (86.8%)                | 35 (100%)                | 0.026   |
| Renal cortical parenchyma        | 13 (34.2%)                | 29 (82.9%)               | <0.0001 |
| infiltration                     | · ·                       | . ,                      |         |

**Supplementary Table 4** Multivariate Cox proportional hazards model for time to metastasis diagnosis. Final variables chosen using backwards selection of the factors that met 0.20 significance cutoff on univariate analysis.

|                    | Events / Total | Hazard Ratio (95% CI) | Cox p  |
|--------------------|----------------|-----------------------|--------|
| рТ                 |                |                       |        |
| 3a                 | 8/33           | Reference             | 0.045  |
| 3b                 | 15/25          | 2.94 (1.15, 7.50)     |        |
| 3c                 | 6/8            | 5.07 (1.57, 16.42)    |        |
| 4                  | 4/5            | 1.62 (0.41, 6.41)     |        |
| pN                 |                | ,                     |        |
| pN0/pNx            | 23/60          | Reference             | 0.0085 |
| pN1                | 10/11          | 3.26 (1.35, 7.86)     |        |
| Sarcomatoid        |                |                       |        |
| Not identified     | 25/62          | Reference             | 0.0027 |
| Present            | 8/9            | 5.27 (1.78, 15.58)    |        |
| Thrombus grade     |                |                       |        |
| Low grade (G2)     | 4/25           | Reference             | 0.0033 |
| High grade (G3-G4) | 29/46          | 6.42 (1.86, 22.20)    |        |

#### **Supplementary Table. 5:** List of primers

| _    |           |                         |
|------|-----------|-------------------------|
| Gene | Direction | Sequence                |
| FOS  | Forward   | CCGGGGATAGCCTCTCTTACT   |
|      | Reverse   | CCAGGTCCGTGCAGAAGTC     |
| JUNB | Forward   | ACGACTCATACACAGCTACGG   |
|      | Reverse   | GCTCGGTTTCAGGAGTTTGTAGT |
| EGR1 | Forward   | ACCCCTCTGTCTACTATTAAGGC |
|      | Reverse   | TGGGACTGGTAGCTGGTATTG   |
| ATF3 | Forward   | CCTCTGCGCTGGAATCAGTC    |
|      | Reverse   | TTCTTTCTCGTCGCCTCTTTTT  |

## **Supplementary Table. 6**: List of 332 driver genes

| ABI1      | CACNA1D | DDX6    | FIP1L1   | KIF5B   | MYO5A    | POLQ     | SIRPA   | VAV1   |
|-----------|---------|---------|----------|---------|----------|----------|---------|--------|
| ABL1      | CALR    | DGCR8   | FLCN     | KLF4    | N4BP2    | PPM1D    | SIX2    | VHL    |
| ABL2      | CAMTA1  | DICER1  | FNBP1    | KLF6    | NBN      | PPP2R1A  | SMARCA4 | WIF1   |
| ACSL3     | CANT1   | DNAJB1  | FOXO3    | KMT2A   | NCOA2    | PRCC     | SMC1A   | WNK2   |
| ACVR2A    | CARD11  | DNM2    | FUBP1    | KMT2C   | NCOR1    | PRDM16   | SMO     | WRN    |
| AFF1      | CASP3   | DNMT3A  | FUS      | KMT2D   | NCOR2    | PRDM2    | SPEN    | WT1    |
| AFF3      | CBLB    | EGFR    | GAS7     | KNSTRN  | NDRG1    | PREX2    | SRGAP3  | ZEB1   |
| AFF4      | CBLC    | EIF3E   | GLI1     | LASP1   | NF2      | PRRX1    | SRSF2   | ZFHX3  |
| AKAP9     | CD74    | ELF3    | GMPS     | LATS2   | NFE2L2   | PSIP1    | SS18    | ZMYM3  |
| AKT2      | CDC73   | ELL     | GNA11    | LCP1    | NFKBIE   | PTEN     | STAG2   | ZNF384 |
| ALK       | CDH1    | EML4    | GOPC     | LEF1    | NIN      | PTPN6    | STAT3   | ZNF521 |
| AMER1     | CDH10   | EP300   | GPC3     | LHFP    | NKX2-1   | PTPRB    | STIL    | ZNRF3  |
| APC       | CDH11   | EPAS1   | GPHN     | LIFR    | NOTCH1   | PTPRC    | STK11   |        |
| AR        | CDK12   | ERBB3   | GRIN2A   | LMNA    | NOTCH2   | PTPRD    | SUZ12   |        |
| ARHGAP26  | CEP89   | ERBB4   | H3F3B    | LPP     | NRG1     | PTPRT    | TAL1    |        |
| ARHGEF10L | CHD2    | ERC1    | HEY1     | LRIG3   | NSD1     | RAC1     | TCF12   |        |
| ARID1A    | CHD4    | ERCC3   | HIF1A    | LRP1B   | NTRK1    | RAD51B   | TCF7L2  |        |
| ARID1B    | CHST11  | ERCC4   | HIP1     | LZTR1   | NUMA1    | RAF1     | TEC     |        |
| ARID2     | CIC     | ERCC5   | HIST1H3B | MAML2   | NUP214   | RANBP2   | TET1    |        |
| ARNT      | CLIP1   | ESR1    | HNF1A    | MAP3K1  | NUP98    | RAP1GDS1 | TET2    |        |
| ASPSCR1   | CLP1    | ETNK1   | HOXD13   | MAP3K13 | NUTM1    | RBM10    | TFEB    |        |
| ASXL1     | CLTC    | ETV4    | HSP90AA1 | MAPK1   | NUTM2B   | RBM15    | TFRC    |        |
| ASXL2     | CLTCL1  | EXT2    | HSP90AB1 | MDM2    | P2RY8    | REL      | TGFBR2  |        |
| ATP2B3    | CNBP    | EZR     | IGF2BP2  | MDS2    | PABPC1   | RET      | THRAP3  |        |
| ATR       | CNTNAP2 | FAM131B | IKBKB    | MED12   | PAFAH1B2 | RFWD3    | TMPRSS2 |        |
| ATRX      | COL1A1  | FANCA   | IL7R     | MITF    | PAX3     | RHOA     | TNC     |        |
| AXIN2     | COL3A1  | FANCD2  | IRF4     | MKL1    | PAX5     | RNF213   | TNFAIP3 |        |
| BAP1      | CREB1   | FANCG   | ITK      | MLH1    | PAX7     | RNF43    | TOP1    |        |
| BAZ1A     | CREBBP  | FAS     | JAK2     | MLLT1   | PAX8     | RPL5     | TP53    |        |
| BCL11B    | CRTC1   | FAT1    | JAK3     | MLLT10  | PBRM1    | RUNX1T1  | TPM4    |        |
| BCL6      | CSMD3   | FAT4    | JUN      | MLLT3   | PCM1     | SALL4    | TPR     |        |
| BCOR      | CTCF    | FBLN2   | KAT6A    | MN1     | PDE4DIP  | SBDS     | TRAF7   |        |
| BCORL1    | CTNNA2  | FBXO11  | KAT6B    | MPL     | PDGFRA   | SDHA     | TRIM24  |        |
| BIRC3     | CTNNB1  | FBXW7   | KCNJ5    | MSH2    | PDGFRB   | SDHC     | TRIM33  |        |
| BIRC6     | CUL3    | FES     | KDM5A    | MSH6    | PER1     | SETD2    | TRRAP   |        |
| BLM       | CUX1    | FGFR1   | KDM5C    | MTOR    | PIK3CA   | SETDB1   | TSC1    |        |
| BMPR1A    | CYLD    | FGFR1OP | KDM6A    | MUC16   | PIK3CB   | SF3B1    | TSC2    |        |
| BRCA1     | DCTN1   | FGFR2   | KDSR     | MUC4    | PML      | SFPQ     | UBR5    |        |
| BRCA2     | DDIT3   | FGFR4   | KEAP1    | MUTYH   | PMS2     | SGK1     | USP6    |        |
| BRIP1     | DDR2    | FH      | KIAA1549 | MYCN    | POLE     | SH3GL1   | USP8    |        |
|           |         |         |          |         |          |          |         |        |